Хромосомный контроль развития

Вышеизложенные представления о генном контроле развития не исключают других уровней контроля, в частности, хромосомный. Важность этого уровня регуляции можно проиллюстрировать примерами, показывающими, что вне хромосомного (хроматинового) контекста невозможно реализовать корректную регуляцию тканеспецифических генов (Bonifer, 2000). Связано это с тем, что нередко регуляторные последовательности расположены на расстоянии десятков тысяч пар оснований от точки инициации транскрипции, и потому необходим механизм пространственного их сближения, что может быть реализовано только тогда, когда ген является структурным элементом хромосомы. Например, Jackson et al. (1996) показали, что гиперчувствительные сайты для ДНКазы в LCR (локусконтролирующий район) кластера бета-глобиновых генов проявляют свою энхансерную активность только после интеграции трансгена в геном трансформированных клеток, тогда как в клетках с транзиторной трансфекцией эта активность либо не проявляется, либо резко снижена. Важно также отметить, что синергичное действие сайтов Н2 и Н3 проявляется только в стабильных трансформантах, но не транзиторных. Если иметь в виду, что LCR находится на расстоянии свыше 20 т.п.н. от инициирующего кодона, то это предполагает, что активирующий эффект LCR возможен только при условии его пространственного приближения с кодирующей частью гена. Прямые доказательства пространственного сближения локуса LCR с одним из экспрессирующихся генов кластера были получены с помощью метода гибридизации in situ, позволившего визуализировать этот процесс (Dillon et al., 1998).

В настоящее время накапливаются данные о "пространственном" контроле транскрипции в индивидуальных хромосомах у разных видов эукариот: дрожжей, дрозофилы и млекопитающих (Cockell, Gasser, 1999; Lyko, Paro, 1999). В дрожжевых клетках инсерция генов в теломерные районы сопровождается репрессией их активности - феномен, напоминающий "эффект положения" у дрозофилы (Grunstein, 1998). В ядре дрожжевой клетки теломерная ДНК формирует компартмент вблизи ядерной оболочки, и там же наблюдается высокая концентрация Sir-белков ("silent information regulator"). При инсерции активного гена вблизи теломеры Sir-белки, образуя комплекс с ДНК, полностью репрессируют его активность. Однако, если нарушается перинуклеарное позиционирование теломеры в результате действия мутаций (генов HDF1 или HDF2 из семейства Ku), то теломеры утрачивают свою репрессирующую активность (феномен "telomeric position effect"). Таким образом, репрессирующее действие теломерного гетерохроматина у дрожжей осуществляется только при условии локализации теломеры вблизи ядерной оболочки. В изящных экспериментах по направленному "заякориванию" трансгена (слитого с геном-репортером) на ядерной оболочке дрожжевой клетки наблюдалась полная репрессия гена-репортера (Andrulis et al., 1998). Авторы заключили, что близость ядерной оболочки способствует репрессии генов у дрожжей, но происходит это при участии Sir-белков, создающих центры нуклеации.

В настоящее время накоплен значительный экспериментальный материал о трехмерной организации интерфазного ядра эукариот, в основе которой лежит дифференциальное позиционирование различных районов хромосом как относительно друг друга, так и ядерной оболочки, что предположительно оказывает существенное влияние на экспрессию генов (Cockell, Gasser, 1999; Misteli, 2001; Gasser, 2002; Parada, Misteli, 2002). В архитектуре ядра ключевым моментом является разделение его на территории, соответствующие индивидуальным хромосомам (Zink, Cremer, 1998; Zink et al., 1998; Edelman et al., 2001). В свою очередь хромосомные территории разбиты на субхромосомные домены (размером примерно 1 Мб) (Zink, Cremer, 1998; Zink et al., 1998). По данным Sadoni et al. (1999), хромосомные территории поляризованы так, что в одних компартментах находятся ранореплицирующиеся (ближе к центру ядра), а в других - позднереплицирующиеся районы хромосом (по периферии ядра, в перинуклеолярной зоне), которые соответствуют R- и G/C-сегментам митотических хромосом (подробнее о R- и G/C-сегментах рассмотрим ниже). Согласно данным Croft et al. (1999) и Cremer et al. (2001), хромосомы с низкой плотностью генов (хромосома 18) предпочтительно локализуются по периферии ядра, а с высокой (хромосома 19) - во внутренних районах интерфазных ядер. Позднее было показано, что расположение хромосом с высокой и низкой плотностью в разных компартментах интерфазного ядра характерно для всех хромосом человека (Boyle et al., 2001). Интересно отметить, что локализация хромосом 18 и 19 в разных компартментах наблюдается у всех приматов Старого Света (Tanabe et al., 2002). По мнению авторов, такой эволюционный консерватизм в пространственной организации хромосом в интерфазном ядре предполагает, что эта форма организации может играть важную роль в функционировании генома. Ранее Стегний (1993) высказал идею, что изменения в архитектонике интерфазного ядра путем изменения позиции хромосом могут играть важную роль в видообразовании. К этому следует добавить, что согласно данным Sun et al. (2000), теломеры больших хромосом локализованы на периферии ядра, тогда как теломеры более мелких хромосом находятся ближе к центру. Таким образом, есть все основания утверждать, что хромосомы неслучайным образом организованы в интерфазном ядре. Более того, хромосомные территории устойчивы и воспроизводятся в дочерних клетках после митоза, а хромосомные компартменты закреплены структурно посредством связей с различными элементами интерфазного ядра (Chubb et al., 2002; Parada, Misteli, 2002).

Перейти на страницу:
1 2 3

Биологически мембраны

Важнейшее условие существования клетки, и, следовательно, жизни – нормальное функционирование биологических мембран. Мембраны – неотъемлемый компонент всех клеток.


Биологические ресурсы

Несколько поколений россиян выросло под бодрые звуки песни "Широка страна моя родная! Много в ней лесов, полей и рек. С тех пор и страна стала не такой широкой, как была, а что происходит с полями и реками - читатель этой книги уже знает. На очереди - сведения о растительном мире, в том числе и о лесах.

Стратегии эволюции и кислород

Испокон веков людей волновал вопрос, как возникли живой мир и они сами. Кажущаяся непостижимость происхождения организмов во всей их сложности и совершенстве неизменно толкала человечество к религии. Действительно, как можно, не прибегая к Создателю, объяснить появление живых существ во всем их необычайном разнообразии?.

Кембрийский парадокс

Примерно 530 миллионов лет назад, в начале кембрийской эпохи, на Земле произошло уникальное событие - внезапно, быстро и почти одновременно возникло множество новых биологических форм, ставших предшественниками важнейших типов современных организмов вплоть до человека.