Взаимодействие генов и генный контроль развития

В настоящее время отсутствует четко сформулированное представление о том, что лежит в основе "программы развития". Это не означает, что к решению этой проблемы нет каких-либо перспективных подходов. Благодаря прогрессу в молекулярной биологии стала наполняться содержанием концепция (до недавнего времени больше напоминавшая соображение общего характера), согласно которой процесс развития покоится на взаимодействии генов, при котором продукты генов предшествовавших стадий развития активируют новые генные наборы в последующие стадии и/или репрессируют отдельные гены предыдущих. Такой тип взаимодействия генов Lewin (1994) определил как "каскадное", подчеркивая этим преемственность в экспрессии генов ранних и более поздних стадий. Действительно, существуют примеры такого рода взаимодействия генов в развитии, например в раннем развитии дрозофилы белковый продукт гена bicoid выступает в качестве типичного морфогена, формируя передний полюс передне-задней оси эмбриона. Этот же ген на более поздней стадии развития проявляет себя как позитивный регулятор одного из первых зиготических генов, гена hunchback, связываясь с его промотором. В свою очередь, белок hunchback является регулятором других генов группы gap, причем экспрессию одних (Kruppel и knirps) он подавляет, а других - активирует (giant). При формировании границ будущих сегментов у дрозофилы важную роль играет ген even-skipped, экспрессия которого регулируется белками Kruppel, giant (репрессоры) и bicoid и hunchback (активаторы) (Lewin, 1994; Volpert et al., 1998). Примером могут также служить скоординированные иерархические взаимодействия между гомеобокссодержащими генами, входящими в комплексы генов С-ANT и С-BX у дрозофилы или комплексы генов: HOXA, HOXB, HOXC и HOXD у млекопитающих (Lewin, 1994; Volpert et al., 1998).

В геномах эукариот доля генов, выполняющих функции транскрипционных факторов, невелика: у дрозофилы около 700, или 5% всех генов, из них 279 участвуют в контроле развития (2,5%) (Adams et al., 2000), у нематоды C. elegans 500, или 2,5% (The C. Elegans Sequencing Consortium…, 1998), а у Arabidopsis thaliana 500, или 2% (The Arabidopsis Genome Initiative…, 2000). Из этого следует, что на каждый ген-регулятор приходится 40-50 генов-мишеней. Каким образом осуществляется координация экспрессии генов-мишеней при малом числе генов-регуляторов? В последние годы активно развивается представление, что, возможно, существует специальный класс транскрипционных факторов - "селекторные" гены, которые напрямую связываются с цис-регуляторными элементами генов-мишеней и объединены в единую "генную регуляторную сеть" ("genetic regulatory network"), в результате чего происходит координированная экспрессия генов, приводящая к формированию той или иной морфологически сложной структуры (Guss et al., 2001). В настоящее время удалось идентифицировать несколько "селекторных" генов: eyeless, Distalless и scalloped. Функционирование такой "генной регуляторной сети" можно проиллюстрировать на примере образования крыла у дрозофилы. Как показали Guss et al. (2001), фактор scalloped в комплексе с транскрипционными факторами vestigial и spalt трансмембранной сигнальной системы Decapentaplegic и cut системы Notch контролируют образование всех частей крыла, то есть один ген-селектор scalloped через генную регуляторную сеть осуществляет контроль образования сложной структуры. Как полагают авторы (Guss et al., 2001), это, возможно, общий принцип генного контроля морфогенеза в развитии.

В этом контексте уместно также рассмотреть большую группу генов, обеспечивающих генную регуляцию посредством проведения индукционных транс-мембранных сигналов из одних клеток в другие, где находятся гены-"мишени". Эта группа генов играет ведущую роль в процессах морфогенеза позвоночных и беспозвоночных и представлена несколькими группами эволюционно консервативных генов: FGF-FGFR (лиганд, ростовой фактор фибробластов и его рецептор), Delta-Notch (лиганд-белок Delta и его рецептор-морфоген Notch), Wnt-Frizzled (сложное семейство белков-лигандов, wingless у насекомых, а Wnts у позвоночных и их рецептор Frizzled), Hedgehog-Pached (сложное семейство белков-лигандов Hedgehog у насекомых и Sonic hedgehog и Indian у позвоночных и их рецептор Pached), семейство белков BMP (морфогенетические белки костного мозга) и их рецепторы серинкиназ и родственные с ними белки beta-TGF (трансформирующий фактор фибробластов), Nodal (у позвоночных) и Decapentaplegic (у насекомых) (Volpert et al., 1998; Hogan, 1999). Как правило, та или иная трансмембранная сигнальная система включает около десятка или более генов. Общий принцип их организации следующий: индукционный сигнал (секреторный фактор-лиганд) одной клетки связывается с рецептором на поверхности клеточной мембраны клетки-мишени, активированный комплекс лиганд-рецептор (например, с помощью протеинкиназ) транспортируется либо непосредственно в ядро, где активирует или репрессирует гены-"мишени", либо вступает в промежуточные взаимодействия с белками или небелковыми компонентами, и затем сигнал достигает генов-"мишеней". Конечным результатом является то, что в большинстве случаев транссигнальные системы регулируют экспрессию нескольких генов-"мишеней". Эти системы можно рассматривать как некое подобие генных сетей, описанных выше.

Перейти на страницу:
1 2 

Биологически мембраны

Важнейшее условие существования клетки, и, следовательно, жизни – нормальное функционирование биологических мембран. Мембраны – неотъемлемый компонент всех клеток.


Биологические ресурсы

Несколько поколений россиян выросло под бодрые звуки песни "Широка страна моя родная! Много в ней лесов, полей и рек. С тех пор и страна стала не такой широкой, как была, а что происходит с полями и реками - читатель этой книги уже знает. На очереди - сведения о растительном мире, в том числе и о лесах.

Стратегии эволюции и кислород

Испокон веков людей волновал вопрос, как возникли живой мир и они сами. Кажущаяся непостижимость происхождения организмов во всей их сложности и совершенстве неизменно толкала человечество к религии. Действительно, как можно, не прибегая к Создателю, объяснить появление живых существ во всем их необычайном разнообразии?.

Кембрийский парадокс

Примерно 530 миллионов лет назад, в начале кембрийской эпохи, на Земле произошло уникальное событие - внезапно, быстро и почти одновременно возникло множество новых биологических форм, ставших предшественниками важнейших типов современных организмов вплоть до человека.