Полигибридные скрещивания

Гибриды первого поколения единообразны как по фенотипу, так и по генотипу. Они образуют гаметы четырех различных типов — АВ, Ab, aB, ab

Таблица V.2

Расщепление по фенотипу и генотипу в F2 при дигибридном скрещивании:

Таблица V.3

Соотношение фенотипических и генотипических классов во втором поколении при моно-, ди-, три- и полигибридном скрещивании:

Зная, что при моногибридном скрещивании расщепление по генотипу соответствует 1АА: 2Аа: 1аа для одной пары и 1BB: 2Bb: 1bb для другой, можно подсчитать частоты, или вероятности, генотипов различных классов. Вероятности генотипов соответствуют: АА – ¼, Аа – ½, аа - ¼, ВВ – ¼, Вb – ½, bb – ¼. Например, относительная частота генотипа ААВВ рассчитывается путем перемножения вероятностей ¼АА х ¼BB = 1/16AABB, для ААВЬ — ¼AA х ½Вb = 1/8 или 2/16, ААВЬ. Тем же путем получаем распределение всех остальных различающихся по генетической конституции классов особей в отношении 1 : 2 : 2 : 4 : 1 : 2 : 1 : 2 : 1, что также полностью соответствует данным решетки Пеннета.

Поступая аналогичным образом, можно представить результаты расщепления по фенотипу и генотипу для тригибридного скрещивания, когда родительские формы различаются по трем независимым признакам и в F, образуются тригибриды. Эксперименты показывают, что при тригибридном скрещивании расщепление в F по фенотипу дает 8 различных классов особей в соотношении 27:9:9:9:3:3:3:1, а расщепление по генотипу дает 27 различных классов.

Подобным образом возможен расчет вероятностей фенотипических и генотипических классов для любого полигибридного скрещивания (табл. V.3).

В общем виде эти соотношения можно выразить простыми формулами: число фенотипических классов равно 2, где «2» отражает парность аллелей, а показатель степени «n» — число независимых генов. Число генотипических классов равно З, где основание степени «3» — число генотипических классов при моногибридном скрещивании, а показатель степени «n» — число генов.

Очевидно, что в основе приведенных формул лежат закономерности моногибридного скрещивания. Они справедливы для любого числа генов, но не превышающих гаплоидное число n.

Важно отметить, что закономерности, открытые Менделем, реализуются при анализе большого количества особей, поскольку малое количество в потомстве гибридов (например, дети одной семьи) может давать отклонения от точного соотношения ожидаемых классов расщепления в силу случайных событий.

Гибридологический анализ, разработанный Менделем, и результаты, полученные на его основе, заложили концепцию фундаментального понятия генетики и биологии в целом — понятие гена. В последние десятилетия XIXв. были обнаружены хромосомы, описаны митотическое и мейотическое деления клетки. Тем не менее не были известны материальные носители наследственной информации. Только после того как законы Менделя были открыты вновь в 1900г., сопоставление менделевского расщепления признаков и распределения хромосом в мейозе позволило сделать окончательный вывод о том, что именно хромосомы являются носителями генетической информации. Этими событиями ознаменовалось начало нового научного периода развития генетики, а наблюдения и выводы Менделя и в настоящее время составляют важнейшую главу учения о наследственности и изменчивости.

Перейти на страницу:
1 2 

Биологически мембраны

Важнейшее условие существования клетки, и, следовательно, жизни – нормальное функционирование биологических мембран. Мембраны – неотъемлемый компонент всех клеток.


Биологические ресурсы

Несколько поколений россиян выросло под бодрые звуки песни "Широка страна моя родная! Много в ней лесов, полей и рек. С тех пор и страна стала не такой широкой, как была, а что происходит с полями и реками - читатель этой книги уже знает. На очереди - сведения о растительном мире, в том числе и о лесах.

Стратегии эволюции и кислород

Испокон веков людей волновал вопрос, как возникли живой мир и они сами. Кажущаяся непостижимость происхождения организмов во всей их сложности и совершенстве неизменно толкала человечество к религии. Действительно, как можно, не прибегая к Создателю, объяснить появление живых существ во всем их необычайном разнообразии?.

Кембрийский парадокс

Примерно 530 миллионов лет назад, в начале кембрийской эпохи, на Земле произошло уникальное событие - внезапно, быстро и почти одновременно возникло множество новых биологических форм, ставших предшественниками важнейших типов современных организмов вплоть до человека.