Психофизиология пространственного зрительного внимания у человека

Американский исследователь Мишель Познер рассматривает внимание как систему контроля умственных процессов, включающих три подсистемы: 1) ориентацию на сенсорное событие; 2) выделение зрительного сигнала для дальнейшей переработки и 3) поддержание активности головного мозга. Первые две подсистемы непосредственно связаны с движениями глаз. Внимание представляется как гипотетический луч и изучается его размер и характер распространения в зрительном поле. Интересно, что вертикальный меридиан, проходящий через fovea, оказался барьером на пути этого луча. Это проявляется в значительном увеличении латентного периода саккады или движения руки к стимулу, предъявляемому в неожиданной позиции в полуполе, противоположном фокусу внимания.

Экспериментальное исследование процессов зрительного внимания направлено на выявление мозговых структур, участвующих в этом процессе. Мы предполагаем, что этапам саккадического программирования могут соответствовать локальные изменения в биоэлектрических потенциалах различных корковых зон, которые могут быть выявлены с помощью метода картирования биопотенциалов. Этим методом выявляются структуры на всех уровнях головного мозга, которые составляют сложную иерархически параллельную систему произвольного управления саккадами у человека. В частности, большое число корковых полей больших полушарий непосредственно связано с этим процессом.

На рис. 5 показаны вызванные биоэлектрические потенциалы, которые регистрируются со скальпа здорового человека в условиях описанного выше эксперимента по предъявлению зрительных стимулов. Методом обратного усреднения биопотенциалов от начала саккады был выделен комплекс медленных и быстрых пресаккадических потенциалов. В период действия ФС на этапе ожидания ПС развивалась ранняя и поздняя медленная негативность (волны МН1 и МН2). В латентный период саккады были выделены быстрые негативные (N-100, N-200) и позитивные (P-100, P-200) потенциалы, а также спайковый (СП) потенциал, пик которого совпадал с началом саккады.

Картирование усредненных биопотенциалов в период центральной фиксации и межстимульной паузы в схеме направленного внимания показало, что ранняя премоторная негативность длительностью 300-500 мс локализована в передних лобных отделах, она симметрична и ее фокус активности переходит из Fz в F3 и F4. Он сильнее выражен перед коротколатентными саккадами, чем перед длиннолатентными, и в ситуации направленного внимания по сравнению с нейтральными условиями. По нашему мнению, это соответствует ориентировочному компоненту волны ожидания и отражает процессы внимания, мотивации, произвольной регуляции деятельности человека, связанные со зрительным восприятием. Центрально-лобная топография предполагает отражение в этом потенциале активности фронтомедиоталамической системы активации и срединных лимбических структур.

Поздняя медленная негативность преобладает в теменно-затылочных областях. В условиях вероятностного предъявления стимулов наблюдается переход фокусов из одного полушария в другое длительностью 50-70 мс. Фокус активности сильнее выражен перед длиннолатентными саккадами. Перед саккадами с коротким и средним латентным периодом фокус активности доминирует в контралатеральном к направлению движения глаз полушарии. Можно предположить, что такая динамика отражает процессы предварительной глазодвигательной подготовки, антиципации, указанных полей коры больших полушарий.

Таким образом, медленные негативные волны, развивающиеся при действии ПС в преднастроечный период, имеют различную пространственно-временную динамику и отражают участие в целенаправленном глазодвигательном поведении когнитивных процессов: внимания, ожидания и антиципации.

После включения целевого стимула в латентный период саккады развиваются быстрые пресаккадические потенциалы: P-200, N-200, P-100, N-100. Изучение параметров и топографии этих потенциалов в различных экспериментальных условиях позволило разделить их на две функциональные группы, отражающие этапы восприятия зрительных стимулов и программирования саккады. Ранние потенциалы P-200, N-200 коррелируют с процессами сенсорной переработки и "сброса внимания". Поздние потенциалы P-100, N-100 являются аналогами моторных потенциалов инициации саккад.

Как уже упоминалось, в схеме предъявления стимулов с темновым зазором в 200 мс наблюдают укорочение латентного периода саккады на 40-60 мс и появление большого числа так называемых экспресс-саккад с латентным периодом 90-120 мс. Феномен экспресс-саккад вызывает большой интерес и дискуссию. Наши экспериментальные данные свидетельствуют о включении в этот процесс дополнительного глазодвигательного поля, поля Fz. По-видимому, существует независимый путь в саккадический генератор мозгового ствола из Fz, минуя верхнее двухолмие. Это иллюстрирует рис. 6, на котором показаны усредненные вызванные потенциалы и их картирование перед экспресс-саккадой. Видно, что ПС включается на пике P-100. Картирование биопотенциалов показывает, что фокус активности находится в Fz, области дополнительного глазного поля. При высоком уровне внимания и функционального состояния головного мозга совпадение пространственного расположения стимула и предварительно выбранной из памяти цели вызывает, по нашему мнению, инициацию экспресс-саккады.

Перейти на страницу:
1 2 3 4

Биологически мембраны

Важнейшее условие существования клетки, и, следовательно, жизни – нормальное функционирование биологических мембран. Мембраны – неотъемлемый компонент всех клеток.


Биологические ресурсы

Несколько поколений россиян выросло под бодрые звуки песни "Широка страна моя родная! Много в ней лесов, полей и рек. С тех пор и страна стала не такой широкой, как была, а что происходит с полями и реками - читатель этой книги уже знает. На очереди - сведения о растительном мире, в том числе и о лесах.

Стратегии эволюции и кислород

Испокон веков людей волновал вопрос, как возникли живой мир и они сами. Кажущаяся непостижимость происхождения организмов во всей их сложности и совершенстве неизменно толкала человечество к религии. Действительно, как можно, не прибегая к Создателю, объяснить появление живых существ во всем их необычайном разнообразии?.

Кембрийский парадокс

Примерно 530 миллионов лет назад, в начале кембрийской эпохи, на Земле произошло уникальное событие - внезапно, быстро и почти одновременно возникло множество новых биологических форм, ставших предшественниками важнейших типов современных организмов вплоть до человека.