Генный и хромосомный уровни контроля развития

Впечатляющий прогресс в клонировании млекопитающих, в основе которого лежат эксперименты по трансплантации ядер дифференцированных клеток в энуклеированные ооциты, привнес новые доказательства того, что эукариотический геном не претерпевает необратимых изменений в ходе дифференцировки и может быть репрограммирован до уровня потенций, сходного с зиготой (Kikyo, Wolffe, 2000; Rideout et al., 2001; Surani, 2001). Более того, показано, что ядра высокодифференцированных клеток, таких, как В- или Т-лимфоциты, способны к полному репрограммированию, несмотря на то, что некоторые их гены (иммуноглобулины и Т-рецепторы) претерпевают перестройку в ходе дифференцировки (Hochedlinger, Jaenisch, 2002). И хотя остается неясным, способны ли к репрограммированию геномы любых типов дифференцированных клеток, список способных к репрограммированию разнообразных типов клеток достаточно велик и включает: фибро- бласты эмбрионов и взрослых животных, клетки кумулюса, эпителиальные клетки молочной железы и яйцевода, эмбриональные стволовые клетки, В- и Т-лимфоциты, незрелые клетки Сертоли и пролиферирующие нейральные клетки коры головного мозга эмбрионов (Ogura et al., 2000; Wakayama, Yanagimachi, 2001; Yamazaki et al., 2001; Hochedlinger, Jaenisch, 2002; Miyashita et al., 2002). Важно отметить, что ранее в экспериментах по трансплантации ядер дифференцированных клеток в энуклеированные яйца или ооциты амфибий были также получены результаты, однозначно свидетельствующие, что процесс дифференцировки во многих случаях не сопровождается необратимыми изменениями в геноме (Gurdon et al., 1979; Gurdon, 1986; 1999). Таким образом, совокупность данных по клонированию амфибий и млекопитающих согласуется с идеей, что в основе развития лежит дифференциальная активность генов, а фенотипическое разнообразие клеточных типов дефинитивного организма поддерживается эпигенетическими механизмами (Latham, 1999). Важно подчеркнуть, что этот принцип является общим для развития как животных, так и растений (Meyerowitz, 2002), несмотря на то, что между ними существуют огромная эволюционная дистанция и существенные различия в характере развитии. Cреди растений в естественных условиях широко распространено вегетативное размножение, включающее репрограммирование специализированных клеток (листа, стебля или корня) с последующим формированием дефинитивных форм с полноценными органами размножения.

    Биологически мембраны

    Важнейшее условие существования клетки, и, следовательно, жизни – нормальное функционирование биологических мембран. Мембраны – неотъемлемый компонент всех клеток.


    Биологические ресурсы

    Несколько поколений россиян выросло под бодрые звуки песни "Широка страна моя родная! Много в ней лесов, полей и рек. С тех пор и страна стала не такой широкой, как была, а что происходит с полями и реками - читатель этой книги уже знает. На очереди - сведения о растительном мире, в том числе и о лесах.

    Стратегии эволюции и кислород

    Испокон веков людей волновал вопрос, как возникли живой мир и они сами. Кажущаяся непостижимость происхождения организмов во всей их сложности и совершенстве неизменно толкала человечество к религии. Действительно, как можно, не прибегая к Создателю, объяснить появление живых существ во всем их необычайном разнообразии?.

    Кембрийский парадокс

    Примерно 530 миллионов лет назад, в начале кембрийской эпохи, на Земле произошло уникальное событие - внезапно, быстро и почти одновременно возникло множество новых биологических форм, ставших предшественниками важнейших типов современных организмов вплоть до человека.